

Demonstrator guidelines for project ENTERKNOW PN-III-P2-2.1-PED-2016-1140 v2.0

Contents
Part 1. Set Up the Modelling Tool	1
Part 2. Create Models	4
Part 3. Create Links between Models	9
Part 4. Create Links between Models and External Data	14
Part 5. Querying Models in the Modelling Environment	15
Part 6. Setup the GraphDB server to host the knowledge base	17
Part 7. Export models	21
Part 8. Understanding the exported model examples	25
Part 9. Create the Hybrid Knowledge Base in GraphDB	29
Part 10. Setting up the front-end application	35

[bookmark: _Toc518330734]Part 1. Set Up the Modelling Tool

Preparing the EnterKnow tool

The EnterKnow modelling tool is not provided to you as an executable, but as ADOxx source code that is at your disposal for further extension or investigation.

This means that, in order to actually use the tool, you must compile its source on the ADOxx platform by the steps listed below (the free license version of ADOxx 1.5 can be obtained from https://www.adoxx.org/live/download-15):

Step 1. Log in the Development Toolkit

Open ADOxx Development Toolkit and log in with the default credentials (user=Admin, password=password)

Step 2. Import the source

1. Open the Library Management feature
2. Open Library Settings – you should see the list of method implementations (called "libraries") which are currently deployed on your ADOxx installation. If this is a fresh installation you should only see an "Experimentation Library". We need to add to this list the EnterKnow implementation source by importing it.
3. Open the Management Tab
4. Press Import
5. Press Browse and select the EnterKnow.abl file from where you have saved it.
6. Press Import

[image:]
Fig. 1. Importing the modelling tool source in the ADOxx Development Toolkit
If this is the first time you import it, you will be asked "Create a default model group?". Answer "Yes" and you should see a success message, then the EnterKnow library will be visible in the list of implementations.
If this is not the first time you import it (e.g., you use a computer where someone else already imported this library) then you might get a warning that you must change the name of the newly imported library. You will be prompted three times to change the name (once for each of the 3 components of an ADOxx library). Do it three times to avoid the name conflict.

From now on, in the screenshots throughout this document the imported library will be visible with the default name "EnterKnow" (if you have to import again and to rename the library, on your computer it will have the changed name – for example "EnterKnow - demo").

Step 3. Define a user for the modelling tool

1. Open the User Management feature
2. Open User Settings – you should see the list of defined users
3. Press Add to create a new user
4. In the new window create a name, a password, confirm the password
5. After the password is created, assign it to the EnterKnow implementation (in the Application library dropdown list)
6. Press User Group to assign the user rights
7. In the new Window press on the default ADOxx user group, thus assigning the default rights
8. Press OK to finish the user rights assignment
9. Press Add to finish creating the new user (and remember the name and password)

[image:]
Fig. 2. Defining a user for the modelling tool
Close all windows.

Step 4. Start the modelling tool

If you are familiar with ADOxx method development, and you want to study and/or extend the implementation of the EnterKnow modelling tool, you will continue working in the ADOxx Development Toolkit (in Library Management).

However, for this exercise we only want to use the modelling tool, not to extend it. Therefore you can close the ADOxx Development Toolkit.

To see the compiled tool, you need to start ADOxx Modelling Toolkit. This time, you need to log in with the credentials you've just created (in the previous step).

After logging in, the EnterKnow tool is ready for use:

1. Right-click on the Models folder and press New
2. You will see the types of models provided by the EnterKnow modelling language. Select one (we will come back later to explain some of them)
3. You will see the list of concepts and connectors (relations) made available for the selected model type
4. Position concepts and connectors on the modelling canvas. For now your model does not have to make sense, just get used to the user interface and the drawing surface
5. Double click on a symbol and you should see its prescribed, machine-readable properties

[image:]
Fig. 3. The types of models in the modelling tool
[bookmark: _Toc518330735]Part 2. Create Models

The exemplified models have already been created ("My Business Model", "My Organization Model", "My City/Region Model", "My External Data Model", "My Zachman MindMap Model") and you can see them if you import the EnterKnowModels.adl file into ADOxx Modelling Toolkit. Log in in ADOxx Modelling Toolkit with your credentials (here our user was "EnterKnowUser", but yours can have different name) for EnterKnow library (imported before into ADOxx Development Toolkit) and then follow the steps emphasized in Fig. 4:

[image:]
Fig. 4. Importing existing model exemples
If you want to create the diagrams from the very beginning just follow the instructions given below (just click on "Models", select the type of diagram and pick and place objects on the modelling canvas):

Create a model named "My Business Model" of type "Business Process Diagram", as in the following example (Fig. 5):

[image:]
Fig. 5. The toolbar for process models

In this model you have three types of tasks (i.e., Business Task, Courier Task and Delivery Task), each one depending on who executes it (you will see later in the role diagram). The Yes/No annotations on the arrows outgoing from the decision node must be written in the "Name" attribute of the “followed By” relation/connector; the decision question must be written in the "Name" attribute of the Decision element.

Create a model named "My Organization Model" of type "Resource Diagram", as in the following example (Fig. 6):

[image:]
Fig. 6. The toolbar for resource diagrams
In this model you can see two types of containers (i.e., Organizational Unit, Organizational Aggregate), both containing some elements. The Organizational Unit contains Roles (e.g., Big Car Driver) and Employees (e.g., John) and the Organizational Aggregate contains Business Partners (e.g., Candidate A) and also Organizational Units.

Now, create one of the third types of models, “My City/Region Model”, of type “Cities/Locations Diagram”, as in the following example (Fig. 7):

[image:]
	Fig. 7. The toolbar for location diagrams
The model is contains several elements: City/Region (e.g., City A), Store (e.g., Store A), Factory (e.g., Factory B) and Warehouse (e.g., Warehouse C). Every location type has three attributes: (i) Longitude, (ii) Latitude and (iii) hasAddress (see Fig. 8) which represent geographical coordinates and addresses. Those attributes values will be sent to Google Maps at run-time.

[image:]
Fig. 8. Editable properties for locations
Optional model (experimental extension, not used for the front-end demonstrator): Create a model named “My External Data Model”, of type “External Data Diagram”, as in the following example (Fig. 9):

[image:]
Fig. 9. Describing a Linked Data Infrastructure
This model contains relative elements for external data: (i) the server concept (Linked Data Space), (ii) the graph database concept (Repository), (iii) the Graph itself concept, and (iv) the Request concept. You can see examples of each concept in Fig. 9 (e.g., customers (of type Graph), Transport (of type Repository) etc).

Now, create the last model, “My Zachman MindMap”, of type Zachman MindMap, as you see in Fig. 10:

[image:]
Fig. 10. Example of Mind Map
The role of this diagram is to function as a central point from which we can access both the front-end demonstrator all the other models. It contains as elements all the Zachman’s facets: (i) WHY – right in the center which represents an objective and it links to another “Zachman MindMap” model and also to the semantic workflow management system, (ii) WHO (green symbol) – it links to “Resource Diagram” model, (iii) WHERE (red symbol) – it links to “Cities/Locations Diagram” model and (iv) HOW (light blue symbol) – it links to “Business Process Diagram” model; (v) extensions for future developments: GENERIC nodes (black symbol) with links to any type of diagram and WHAT nodes (purple symbol) –links to “External Data Diagram”.

Up to this point, the semantics expressed in the model is partly left to human interpretation, based on labels (as you see in Fig. 11, Fig. 12):

[image:]
Fig. 11. Possibilities of model linking
[image:]
Fig. 12. Linking the Mind Map to the different types of models
Examples of relations that can be set as machine-readable links so that the front-end application can apply semantic queries across such models:
· We need to express that a task has to be executed by some role or employee;
· We need also to express that an employee can fulfill a role from the model;
· A task may have one or more corresponding locations of different types (Store/Factory/Warehouse/City).

[bookmark: _Toc518330736]Part 3. Create Links between Models

Semantic hyperlinks are "hyperlinks with meaning". In other words:
· They can be used in the modelling tool to navigate between related models or from one element to another in the same model
· Each of them has a well-defined meaning, event their own properties - unlike HTML hyperlinks whose meaning is typically left to the human interpretation
First, create a link connecting two elements within the same model. Such links are useful as an alternative to visual connectors, to avoid visual cluttering. This means that certain semantics will not be communicated on a visual level (their understanding is ensured by interacting with the model, not just by looking at it).

An example of an in-model link is the one between an Employee and the associated Role.

[image:]
Fig. 13. Creating semantic hyperlinks in models
So, double click on "Jim" who is an Employee in “My Organization Model” to see its prescribed properties.

1. Click on “Description” field, then click on the “plus” sign located right above “fulfils” property
2. A new window appears, click on the model from where you want to choose the role (in this case is the same model “My Organization Model”)
3. Select a role (e.g., Big Car Driver)
4. Create the link (Add reference)
5. Apply
6. See the created link on the space allocated for “fulfils” property

As an alternative to that hyperlink you can use the “decomposition” arrow (used in this guide in part 7) to indicate graphically the relationship between roles and employees. The front-end demonstrator relies on the arrow to identify this relation.

Next we create a link from process activities to the roles that should perform them. Any type of task can be performed either by an employee or by a role (as seen in Fig. 14):

[image:]
Fig. 14. Linking tasks to roles or instance employees
To assign a role for example, you should follow the steps:

1. Double-click on a task (e.g., “Pick on demand shirt order”)
2. Select the “Resources” tab
3. Choose the resource diagram from which you want to pick the role (in this case “My Organization Model”)
4. You should see a list of roles, click on that one that you want
5. Add reference
6. Apply
7. See the assigned role on the dedicated field

Do the same for the activity if you want to assign an employee. Notice that a task can have assigned both the role and the employee. You will notice that the target role is displayed as a hyperlink anchor in each activity.

Next we move to the “My Business Model” to create a link between the task and some relevant location for it.

1. Double-click on a task (e.g., “Pick on demand shirt order”)
2. Select the “Location” tab; you can define three types of locations – it is relevant to distinguish between them for transportation tasks (start location, intermediate location, final location);
3. Choose the resource diagram from which you want to pick the location (in this case “My City/Region Model”)
4. You should see a list of cities and locations, click on that one that you want
5. Add reference
6. Apply
7. See the assigned city/location on the dedicated field

[image:]
Fig. 15. Linking tasks to locations
Next we move to “My Organization Model” in order to choose a city for any business partner.

1. Double-click on a business partner (e.g., “Candidate E”)
2. Choose the location diagram from which you want to pick the role (in this case “My City/Region Model”)
3. You should see a list of cities, click on that one that you want
4. Add reference
5. Apply
6. See the assigned city/parking area on the dedicated field

[image:]
Fig. 16. Setting locations for business partners
The last type of model in which we have links to other models are “My Zachman MindMap” (see Fig. 17). Every symbol corresponding to an element from “Zachman MindMap” can be changed using a preferred picture attribute as shown in Fig. 17:
[image:]
Fig. 17. Customizing the iconic representation of Mind Map elements
1. Select the element that you want (in this case “System models”);
2. Choose “Description” tab;
3. Write the path to the desired picture;
4. Press “Close”;
The central element which represents an objective (WHY – “Customer order fulfilment for shirts”) should be linked to the front-end of the semantic workflow management system:
[image:]
Fig. 18. Linking the Mind Map center node to the front-end demonstrator
1. Double-click on “Customer order fulfilment for shirts”;
2. Choose the “Program arguments” field and type the URL that launches access the front-end application, whose setup will be described in Part 12. The URL is http://localhost:8080/login.html
3. Press “Close”;

In the “Zachman MindMap” type of diagram, every node links to another type of diagram. For example the node “Process Models” of type “HOW” has a link to a business process model “My Business Model” (see Fig. 17). You can add this by following the steps:
1. Double-click on “Process Models” element;
2. Choose “Link” tab;
3. Press the plus sign from top;
4. Select “My Business Model” from models directory;
5. Add reference;
6. Apply;
7. See the link to the chosen model in the dedicated field;
[image:]
Fig. 19. Linking Mind Map elements to related process models
Now there's a number of meaningful hyperlinks that make the model semantics available not only for human interpretation, but also for machine readability and further processing. In other words, the models are not just some drawings to be included in a documentation – they are a "knowledge base" which may be queried.

[bookmark: _Toc518330737]Part 4. Create Links between Models and External Data

Besides the links between models or model elements, it's also possible to create links to external resources, for example equivalence links to things that already exist in some RDF database. For this purpose, the sameAs link property may be employed:

[image:]
Fig. 20. Setting up a URI for a model element (instance employee)
This is also valid for other model elements – e.g., for roles, assuming that a role taxonomy already exists.

[image:]
Fig. 21. Setting up a URI for a role
The "sameAslink" allows us to override the identifiers that otherwise would be generated by the modelling tool, with stable identifiers that already exist in some external system, for some of the modelled things (in this examples, we did this for employee identifiers and a role identifier).

[bookmark: _Toc518330738]Part 5. Query Models in the Modelling Environment

The "Knowledge Base" formed by models may be analyzed through querying mechanisms provided directly in the modelling environment: the AQL language and a query builder providing some query templates. The query feature may be accessed as follows:

1. Activate the "Analysis" component (from Modelling Toolkit)
2. Open the Analysis menu
3. Select Queries/Reports (not visible in the screenshot)
4. Select the model to be queried (My Business Model)
5. Press OK

[image:]
Fig. 22. The model queries component
The Query window will appear, providing means for both building a template-based query and for writing a query with AQL statements. In the next figure, the query retrieves from the business model all tasks and decisions of TransportToCustomer task in relation to “followedBy”. Notice the steps:

1. Select Queries on model contents
2. Select the template that best fits the intended query
3. Indicate the target object ("TransportToCustomer" types exactly as the name it was given)
4. Select the type of the target object ("CourierTask")
5. Select the type of connector whose targets should be retrieved ("followedBy")
6. Press Add
7. In the box below you will see the AQL query generated by the template. This can be customized by those who know AQL
8. Press Execute
9. You should see the query results

[image:]
Fig. 23. Writing model queries within the modelling environment
More complex queries may be constructed with the AQL language. We only provide here one examples:

(<"Employee">[?"fulfils" = "REF mt:\"Resource Diagram\" m:\"My Organization Model\" c:\"Role\" i:\"Big Car Driver\""])
This query will retrieve all the employees with the role “Big Car Driver”

However, AQL queries are limited to model analysis within the modelling environment. In the next step we will employ semantic technology to expose model contents to external systems – specifically, this can be achieved with the Resource Description Framework and its graph query language SPARQL.
[bookmark: _Toc517054302][bookmark: _Toc518330739]Part 6. Setup the GraphDB server to host the knowledge base

In the following we will use the GraphDB server due to its RDF graph database management capabilities, including support for OWL ontologies and inferences.

Some preparation is required after the download (https://ontotext.com/products/graphdb/):
Make sure that Java is properly installed and configured. This means that after installation, you need to create an Environment Variable to indicate where you installed Java. This variable should be named JRE_HOME (if you installed a JRE variant of Java) or JAVA_HOME (if you installed a JDK variant of Java). On a Windows 7 machine with JDK installed this is set as shown in the figure:
[image:]
Fig. 24. Setting up the Java environment in Windows 7
If you downloaded the standalone version of GraphDB, no installation is required. Just go to the folder where you unzipped it, go to BIN and run the file graphdb.cmd.
After it starts, use the browser to access the server interactive console at http://localhost:7200.
[bookmark: _Hlk517393779]Select "Create a repository" and use the settings visible below:
[image:]
Fig. 25. The knowledge base initialization
This will create a graph database with OWL capabilities, thus also allowing us to add ontological axioms (based on the OWL2-RL profile and inference patterns).
Let's add some minimal sample data to become familiar with graph queries.
@prefix : <http://example.org#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
#instance data (facts)
:Jim :isRelativeOf :Mary.
:Mary :isRelativeOf :Andrew.
:Andrew :livesIn :Vienna.
#ontology fragment (OWL axioms)
:isRelativeOf a owl:TransitiveProperty.
:hasRelativesIn owl:propertyChainAxiom (:isRelativeOf :livesIn).
:Viennese owl:onProperty :livesIn; owl:hasValue :Vienna.

Use the Import->RDF option in Graph DB, as shown below. Copy-Paste the data in the Text area Tab and press Import (twice).
[image:]
Fig. 26. Uploading knowledge graphs in GraphDB
Use the SPARQL option to run queries.
[image:]
Fig. 27. Running semantic queries in GraphDB
Query examples:
Retrieve the list of all Viennese:
PREFIX : <http://example.org#>
SELECT ?x
WHERE {?x a :Viennese}
Who has relatives in Vienna?
PREFIX : <http://example.org#>
SELECT ?x
WHERE {?x :hasRelativesIn :Vienna}

Notice that although we did not add explicitly statements such as "x a :Viennese" or "x :hasRelativesIn :Vienna", they were generated by reasoning, based on the uploaded axioms and instance data. Next, such mechanisms will be applied to the diagrammatic contents of our EnterKnow demo. First, we need to export models into RDF graphs and upload them in GraphDB.

[bookmark: _Toc517054303][bookmark: _Toc518330740]Part 7. Export Models

If you want to go all the way through this conversion step, further read the details in this section. Otherwise, go to Part 8 and import in GraphDB the TriG files that are already provided in the tutorial archive (LanguageConcepts.trig and ModelContents.trig).
The export steps allow are the following:
1. Go to the ADOxx Development Toolkit and export the modelling language definition as XML
2. Go to the modelling tool and export the model contents as XML
3. Use the RDF transformer (provided in the archive) to transform the models from XML to RDF. In the following screenshots we detail these steps.

Step 1: Start the ADOxx Development Toolkit, go to Library Management, select the Transport (EnterKnow) implementation source and select XML Export.
[image:]
Fig. 28. Exporting the modelling language concepts to XML
Step 2: Go to the modelling tool, select the Import/Export component and go to the Model menu. At first, import the ADL file (ADL Import) attached in the archive to have the models that will be used for the application (transportmodel.adl), then select the XML Export (not visible in the screenshot). Select all of the models (all of them will be saved in the same file!), use the Browse button to set the target file and press Export.

[image:]
[image:]

[image:]
Fig. 29. Exporting model examples to XML
Step 3: Execute the RDF Transformer provided in the archive and use the top half of its window to load the language vocabulary (the XML file exported from ADOxx Development Toolkit). You will be prompted to specify a URI for the graph where the language vocabulary will be stored.

[image:]
Fig. 30. Declare the namespace for the graphs derived from modelling concepts
The URI in the figure will also be used in the queries, so type the same to keep things simple. After setting the URI, the properties discovered in the models are displayed. The users have the chance of disabling the properties that they don't want to export.
Use the Save button to save the language vocabulary, preferably in the TriG format.
After the language was exported, use the Load button in the bottom half of the Window to do the same for model contents. Use the Transform button to convert the XML to RDF. Again you will be prompted to customize the URI for model elements (use the one in the figure for simplicity). In the end use the Save button, again with TriG as file format.

[image:]
Fig. 31. Declare the namespace applied to model elements
Important: For the URI of model elements, use the ‘ / ‘ character instead of ‘ # ‘. This is because for model elements there is a dereferencing service that delivers their descriptions at exactly the address http://www.example.org/...
[bookmark: _Toc517054306][bookmark: _Toc518330741]Part 8. Understand the Exported Model Examples

Before detailing the front-end application setup, let's investigate the model examples that will be used to populate the knowledge base in the next section.
Step 1: Log into the modelling tool with the user that you created in Part 1.
Step 2: Access the “Distribute sweaters” diagram (already provided for import, as instructed in Part 7).
[image:]
Fig. 32. Example of process that drives the demonstrator front-end
Step 3: Let’s take a look at a task, for example “Distribute sweaters”, and see what properties it has, remembering the types of information resulted from the queries.

[image:]
Fig. 33. Linked the process model
A ROLE must always be assigned in the Task-Resources (2) tab to assure the workflow accuracy.
This task is assigned for a Driver, but is also sets a specific user to do this specific Task (the driver specialised for this route). At step 3, double click on “Mihai” and close this window.
[image:]
Fig. 34. The roles and employees model
At this point, we see this employee in the Resource Diagram.
Please note that even though both arrows or hyperlinks can be used to enable role fulfilment in the modeling environment, but the front-end only queries the arrows.
Double click on the highlighted employee to see the types of data queried earlier.
[image:]
Fig. 35. Contact data for an employee element
Now let’s go back to Fig. 33. In the Location tab, the locations where the employee has to act in order to complete the task are given. Any of the corresponding locations lead to the diagram that contains them:
[image:]
Fig. 36. Location models
In this example, by clicking on “Franzen Store”, we are forwarded to this diagram that contains the locations described for this business. Some of them are stores, others are warehouses or factories, also being part of cities.
[image:]
Fig. 37. Location properties in the modelling tool
[bookmark: _GoBack]All these items can be described by coordinates (if they are set to 0, the application will ignore them) and by a given address. It is enough to add the address, since the front-end application will use the Google Maps Platform to obtain the coordinates for it and to trigger geocomparisons with external geographical data.
[bookmark: _Toc517054304][bookmark: _Toc518330742]Part 9. Create the Hybrid Knowledge Base in GraphDB

To skip this part and quickly test the front-end application you can import the database.trig file available in the provided archive, which contains the full knowledge base to be built in this section.
Go to the location where you saved the files exported during Part 7. However, this time select the TriG format instead of Turtle, before pressing Import (a Trig file contains multiple graphs, a Turtle file may contain a single graph; in our export case, each model is a separate graph).
[image:]
Fig. 38. Importing diagrammatic content in GraphDB
The statements should now be imported and queryable from GraphDB. Let’s try some queries to make sure the data was imported correctly:
Query 1: Get all the tailors:
PREFIX : <http://www.example.org#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?y where {
?x :Name 'Tailor' .
?y :fulfils ?x .
}

The result should be (different ID numbers):
[image:]

Query 2: Get all the tailors along with their phone numbers and email addresses:

PREFIX : <http://www.example.org#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?y ?z where {
?x :Name 'Tailor' .
?y :fulfils ?x .
?y :Phone_Number ?z . }

The result should be:
[image:]

Query 3: Get the task assigned to the tailors:
PREFIX : <http://www.example.org#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?y WHERE
{
?x :Name "Tailor" .
?y :Assigned_role ?x .
}

The result should be:
[image:]

Query 4: Get the task that follows after the one resulted from Q3 (change the ID – bolded in the query- according to the result from Q3):
PREFIX : <http://www.example.org#>
PREFIX example: <http://www.example.org/>
SELECT ?x WHERE
{example:BusinessTask-49809-Tailor_sweaters :followed_By ?x}

The result should be:
[image:]
For the front-end application to work, it is necessary to have direct relations between the tasks, as they can be seen in the models. Because the “followed by” arrows also have properties, they are not exported as predicates between the subject and object of the statement, but as entities linked to the instance they come from to the instance they go to. For the tasks to have direct relations, it is necessary to use OWL inferences to generate additional helper relations that are navigated by the front-end to navigate across the models. In the following lines we will see a few examples of such axioms which create this relationship.
@prefix cv: <http://www.comvantage.eu/mm#> .
@prefix : <http://www.example.org#> .
 :source owl:inverseOf cv:from_instance.
 :target owl:inverseOf cv:to_instance.
 :followed_By owl:propertyChainAxiom (:source cv:to_instance).

This piece of code must be written in the “Text area” field from GraphDB. Then select the TriG format and press “Import”.
[image:]
Fig. 39. Importing OWL axioms
These axioms create bidirectional relationships, creating inverses for some predicates (inverses will be explained in the next example), while also generating the followed_By predicate when finding a succession of occurrences (a source task that is mapped to a target task by the ‘to_instance’ predicate).
It would also be possible to create this relationship by using SPARQL Insert queries:
PREFIX : <http://www.example.org#>
PREFIX cv: <http://www.comvantage.eu/mm#>
INSERT {?x :followed_By ?y} WHERE {?node cv:from_instance ?x; cv:to_instance ?y; a :followed_By}

It is useful to have bidirectional relations for two types of relations: Followed By, which says what task needs to be performed after the subject, and Assigned Employee, which specifies which employee is responsible for the subject.
This can be achieved by using the owl:inverseOf property, which creates properties for the object of a statement based on the predicate.
More specifically, for the “followed_By” property we will generate “preceded_By” properties, meaning that an object that follows another is also preceded by the one it follows, which will be useful when dereferencing terms. The same is available for the “Assigned_employee” property, so when a task has an assigned employee for it, the database also stores the information that the employee is responsible for that task.
@prefix : <http://www.example.org#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
:preceded_By owl:inverseOf :followed_By .
:responsible_For owl:inverseOf :Assigned_employee .

We also need to add superclasses or superproperties for some of the modeling items, such as locations or tasks. This is useful when initializing multiple items with similar, but not identic semantics (example: for a Task, we will need to initialize its locations, which can be of different types, such as Warehouse, Factory or Store).
@prefix pred: <http://www.example.org#> .
@prefix : <http://www.example.org/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
pred:Warehouse rdfs:subClassOf :Location .
pred:Store rdfs:subClassOf :Location .
pred:Factory rdfs:subClassOf :Location .

This creates a super-class for the three types of locations available from the diagrams, making it possible to query the database for “ :Location “ and get all items from the three subclasses.
We can do the same for the Tasks:
@prefix pred: <http://www.example.org#> .
@prefix : <http://www.example.org/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
pred:BusinessTask rdfs:subClassOf :Task .
pred:DeliveryTask rdfs:subClassOf :Task .
pred:CourierTask rdfs:subClassOf :Task .

Considering the fact that we work with geographic items, it is useful to integrate them with an ontology that best describes this type of information. GeoSparql is an ontology that allows us to create geographic items and match them through geocomparison inferences and functions (such as finding the distance between two geographic items). In GeoSparql, the objects are Features and each feature should own a Geometry. The locations obtain their geometrical representations by accessing the Google Geocoding API with their address, creating geometrical items from the coordinates obtained as a response.
It would also be useful for the employees to have a list of parking lots near the locations they are heading to. This is external legacy data that we consider to be available in traditional data sources or external services. In this example, the external data is stored in an Excel file (provided with the archive). We use the OntoRefine component of GraphDB for semantic lifting of legacy data sources.
[image:]
Fig. 40. Excel table to be merged into the knowledge graph
This Excel file lists some parking lots that we added for this demonstration.
The Locations described in the diagrams will be initialized to match the ontology when first creating them. To import them, please follow these steps:
Step 1: Use this menu from GraphDB to import the Excel file (import the file given in the archive or create another respecting its structure).
[image:]
Fig. 41. Uploading Excel tables into GraphDB
When creating the project, give it a name (any name you wish) and click on “Create Project”:
[image:]
Fig. 42. Uploading Excel tables into GraphDB
Step 2: The first step will create an externally stored graph:
[image:]
Fig. 43. Uploading Excel tables into GraphDB
Please click on the “SPARQL Endpoint” button and copy the address prompted, saving it somewhere handy.
You can also click on SPARQL and run the query to see how the data from the Excel file is stored in this graph. This will be used as an import to our database, by creating objects that match the ontology we are using.
Step 3: Now, we need to import the lifted data to the hybrid knowledge base. For this, access the SPARQL query item from the left menu and add the following query:
PREFIX : <http://www.example.org/>
PREFIX pred: <http://www.example.org#>

INSERT {
 GRAPH <http://www.example.org/Parkings>{
 ?parkingURI a :ParkingLot;
 pred:hasName ?name;
 pred:hasAddress ?address;
 pred:hasPrice ?price.
 }
} WHERE{
 service <http://localhost:7200/rdf-bridge/1885386289375>{
 select * where{
 ?sub
 <urn:rowNumber> ?id;
 <urn:col:Name> ?name;
 <urn:col:Address> ?address;
 <urn:col:Price> ?price;
 BIND(URI(Concat("http://www.example.org/", ?id)) as ?parkingURI)
 }
 }
}

The first part of the query (before the WHERE keyword) describes how the data will be stored in our graph database. The second part takes the data from the adhoc endpoint generated by OntoRefine for the lifted data. This query will create a graph of Parking lots.
[bookmark: _Toc517054308][bookmark: _Toc518330743]Part 10. Setup and Run the front-end application
[bookmark: _Hlk517395010]Before running the jars, we need to set up the localhost to respond to “http://www.example.org” with a URI dereferencing service that publishes model information.
Step 1: Go to C:\Windows\System32\drivers\etc and open the hosts file with an editor.
Step 2: Write the following line after the commented ones:
127.0.0.1 www.example.org
[image:]
Step 3: Save and close the files. If it requests administrator rights, reopen it as an administrator, do step 2, and save.
Now the URI dereferencing service used to get data from the database at application level should work. Perform the following steps:
Step 1: Go to the folder where you saved the elements from the archive and open a command line (shift + right click, choose the option to open command line).
Step 2: In the command line, write the following command:
java -jar dereference.jar

There should be a long log and the last line should look like this:
[image:]
Step 3: Go to the GraphDB query endpoint and do the following query:
PREFIX : <http://www.example.org#>
SELECT ?x WHERE
{?x :Name "Mihai"}

For us, the result is: :Employee-49815-Mihai . Yours will most probably be another, copy it from there, but without the “ : “ .
Step 4: Go to a browser of your choice, and add it to http://www.example.org/ .For example: http://www.example.org/Employee-49815-Mihai .The browser should respond as shown in Fig. 44. This is a dereferencing service that allows others to build applications that retrieve all information connected to a diagrammatic element (also used in our demonstrator):
[image:]
Fig. 44. JSON-LD representation of a diagram element, as retrieved from the model dereferencing service
In order to start the application, it is also necessary to have an SQL database that stores login data and connects the SQL users to the RDF data.
Step 1: Open a command line and log in as an admin. it should work with the following command:
mysql -u root -p
The command line will ask for a password, which, by default, is null (just press enter).
Step 2: When logged in, type the following commands:
create database transport;
create user 'tsport'@'localhost' identified by 'pass';
grant all on transport.* to ‘tsport’@’localhost’;
\q
mysql -u tsport -p
(when prompted for password, use ‘pass’ as the password);
use transport
create table user (id int auto_increment primary key, email varchar(45), name varchar(30), password varchar(255), rdfid varchar(30), role int);
insert into user values (1, 'admin@example.org', 'admin', '$2a$10$/DQ7O/oqqJaeVsqqOYx85uLPZrTgIeDUVGBiyRczeIfBHGWJo6TW2', 'noid', 0);
(this is a predefined admin for the application, which will then be used to set it up).
After setting up the database, go back to the archive, and run the following command:
java -jar transport.jar

Now, from the browser, go to localhost:8080/login.html and log in with the following credentials:
Username: admin
Password: password
The registration page should appear.
If you wish to create another admin, you can do it from here and delete the one that already exists from the database.
What we need to do is to create a user that matches the local ID of an Employee from the Graph Database. In this case, it is mandatory to create users for two employees, because they have tasks that are already assigned: Ioana (Tailor), and Mihai (Driver). Select the Local ID from the dropdown list.
Add a username and password, which will be the credentials, the Local ID, and select Employee from the dropdown list. It should look like this:

[image:]
Fig. 45. Defining credentials for the modelled employees
Do this for both users.
You can also see that the admin has a menu designed for the decisions found in the process model:
[image:][image:]
Fig. 46. Admin view on decisions detected in the process model
This is still pending in the application, as the business flow did not reach a decision point. Now, before going further, also click the following button (bottom of the page):
[image:]
This will initialize the parking lots imported through OntoRefine, creating the items matching the GeoSparql ontology by matching them with their coordinates obtained through the Google Geocoding API, creating geographic objects for them in the GeoSparql ontology. This button needs to be clicked anytime new data from external sources (such as the Excel file) is added.
You can now logout and log back in as an employee.
Let’s log in as the driver (Mihai). Enter your credentials and hit the login button. You should be prompted with the following page, whose symbols are further explained:
[image:]
Fig. 47. Employee view on available tasks, according to modelled assignments or roles
[image: http://cdn.onlinewebfonts.com/svg/img_230605.png] Pending task: It cannot be taken as active or completed yet, because another task needs to be performed before it. Some appear as active because they were assigned from the modelling level; if a user drops it, he/she cannot take it again until it is available. By clicking this button, the application responds with contact information about the user/department assigned for the task that precedes this one, so the user can enquire about the status of that task. The responses look like this:

[image:]
Fig. 48. Contact data for inactive task responsible
[image: https://vignette4.wikia.nocookie.net/nintendo/images/a/a5/X.png/revision/latest?cb=20120817061204&path-prefix=en]Give up task: When a user decides he/she cannot complete the task anymore, this option makes the task available again for other users.

[image: https://d30y9cdsu7xlg0.cloudfront.net/png/38699-200.png]Take task: By clicking this button, a user takes this task as active, making it unavailable for other users (the active tasks are only visible for the user that is responsible of achieving them, the available tasks are visible for all of the users).

[image: https://cdn0.iconfinder.com/data/icons/iconshock-windows7-icons/256/task_completed.png] Complete task: This task is active and can be completed, so it is removed from the list of active tasks and the application writes data to the database about the task’s completion.
[image: https://png.icons8.com/color/1600/google-maps.png]View task map: Clicking on this button will load a page to view the tasks on a map and access them from there, to help the users choose the tasks nearby:
[image:]
Fig. 49. Google Maps component to display task locations
This map shows the tasks, along with the employee’s current location. Not all the tasks are shown on this page, because some have the same starting location (and there can’t be two markers of the same type in the same location, so we only see the task that should be available sooner).
Sometimes, a user might be in the situation when all of the tasks are pending, which means that another department has to finish a task or an admin must make a decision before he/she can take another task (for example a Driver must wait before a Tailor tailors the sweaters before taking them to the warehouse, moving them to another city and so on).
The purpose is to finish all the tasks for each process. An employee (except for admin) cannot see what processes the tasks are described in (because of company privacy issues and levels of authorization), but when all of the tasks from a process are finished, the application writes to the database that the process is done. This can be viewed in the Administration Page when logging in as an admin, along with the time of fulfilment and the finished processes, which are the groups of tasks described in the models.
When clicking on any of the tasks, we get relevant information that is semantically linked to them either from models or from external data. Click on the item showed in the model, the “Distribute sweaters” task.
IMPORTANT: Make sure you have an active internet connection before accessing this page, otherwise some features will not be available.
[image:]
Fig. 50. Inferred parking suggestions integrated with Google Maps
This page retrieves all the information described in the diagrams about the Task, plus some additional info.
[image:]- this marker shows the starting point of a task.

[image: Map icon]- this marker on the map shows the Task’s intermediate locations (others than the starting and ending point).
[image:]-this marker symbolizes the ending point of a task.
All the points symbolized with these three icons are the ones represented in the model (we use the Google Geocoding API to get the coordinates from the addresses given in the models, if the coordinates are set to the default of 0).
[image: https://maps.google.com/mapfiles/kml/shapes/parking_lot_maps.png]- these are the recommended parking lots previously imported through OntoRefine. Their geographical coordinates are also obtained through the Google Geocoding API.
[image: http://maps.google.com/mapfiles/kml/pal4/icon62.png]- this marker shows the current location of the employee. In this image, it cannot be seen as it is far from the task’s locations. Zooming out (if necessary) will show this icon too.
Sometimes you will need to zoom out to see all the icons. For some tasks, there are only some of the markers on the map (for example, not all the tasks have intermediate locations or recommended parking lots).
In this case, two of the markers have the same address, but are both visible because they are different. In this task’s case, the start point and the finish point of a task are the same.
TIP: Try clicking on any markers (except for your current location). This will forward you to the best route available from your current location.
The button over the “Task locations” table can be used to take a task, complete a task or see the details for a task that is pending directly from this page, in the same way as this would be done from the Task Selection Page.
The buttons near the task locations names will present a list with the details of the nearest parking lots (initially stored in the imported Excel file), such as:
[image:]
Fig. 51. Parking recommendation based on GeoSPARQL inference
You can try taking and finishing some tasks from the employee’s main page. At some point, you will notice that all the tasks are locked (pending). There are two possible reasons for this:
1) Another employee has a task to finish before any of those showed in your menu. It can either be an employee of the same type that took a task (and made it invisible for you), or it can be a task assigned to an employee of another type (Tailor),
2) An admin might have to make a decision before the business logic goes further.

When the tasks are locked, check both. For the first reason, in this case (testing with only one employee of each type), you will need to check the employee that has the other role (Tailor) and finish its task before going further.
In a concurrent environment, a user would have to wait until a suitable task would become available or use the “pending” task button to get contact information on who is responsible for the task that needs to be accomplished before.
When making a decision for an admin, please look back to the Business Process Diagram. You will notice that all the items that follow a decision and do not root back to the right route are deleted (for example choose “No” -> it will be only one task left in the Business Process, the “Return to Factory” task, as it does not point to any object from the other route; on the other hand, if you choose yes, all the tasks will have to be accomplished, but in a different order). Experiment with this and reimport the diagrams to check both options (you can reimport only the diagrams exported from the modelling environment, the parking lots are already obtained, though there will be no bugs if you import the whole database again).
After finishing one Business Process, this will be visible in the administration panel:
[image:]
Fig. 52. Admin view on completed tasks
Here, you are able to see all the completed tasks, the employee who completed them and the date when the tasks have been completed. On the left side, you can see a similar list for the completed processes.
Also, the admin has the following menu to see which tasks from any of the diagrams imported still need to be completed:
[image:]
Fig. 53. Pending tasks in the Admin view
Try clicking on any of these tasks. This will dynamically load an HTML div in this page, getting the responsible employee’s/department’s contact data and name. This is done through accessing a RESTful web service developed for this purpose, which returns the data necessary in a JSON response that is loaded on this page. Clicking on any of the tasks from this list will instantly load this area on the HTML page:
[image:]
Fig. 54. Retrieving responsible contact data
41

image3.PNG

image4.PNG

image5.PNG

image6.PNG

image7.PNG

image8.PNG

image9.PNG

image10.PNG

image11.PNG

image12.PNG

image13.PNG

image14.PNG

image15.PNG

image16.PNG

image17.PNG

image18.PNG

image19.PNG

image20.PNG

image21.PNG

image22.PNG

image23.PNG

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.PNG

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image1.PNG

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image2.PNG

